При анализе решения задачи полезно сопоставить решение данной задачи с ранее решенными, установить возможность ее обобщения.
Мы думаем, учитель должен постоянно помнить, что решение задач является не самоцелью, а средством обучения. Обсуждение найденного решения, поиск других способов решения, закрепление в памяти тех приемов, которые были использованы, выявление условий возможности применения этих приемов, обобщение данной задачи — все это дает возможность школьникам учиться на задаче.
Именно через задачи учащиеся могут узнать и глубоко усвоить новые математические факты, овладеть новыми математическими методами, накопить определенный опыт, сформировать умения самостоятельно, и творчески применять полученные знания.
О роли наблюдений и индукции при нахождении способов решения нестандартных алгебраических задач.
Общеизвестна роль, которая отводится индукции и наблюдениям при обучении математике учащихся младших классов. Позднее индуктивный метод уступает место дедуктивному. При этом часто индуктивный способ решения задачи не проводится, решение выполняется дедуктивным способом. В результате от учащихся ускользают пути поиска решения задачи, что отрицательно сказывается на математическом развитии.
К сожалению, как свидетельствуют данные нашего исследования, при обучении учащихся математике (в частности, при обучении учащихся способам решения нестандартных задач) наблюдение и индукция (в том числе и полная) не заняли еще должного места. А между тем учитель должен знать, и по возможности довести до сознания учащихся тот факт, что математика является экспериментальной, индуктивной наукой, что наблюдение и индукция играли и играют большую роль при открытии многих математических фактов. Еще Л. Эйлер писал, что свойства чисел, известные сегодня, по большей части были открыты путем наблюдения и открыты задолго до того, как их истинность была подтверждена строгими доказательствами.
Поэтому уже в младших классах школы при обучении математике (да и другим предметам) надо учить школьников наблюдениям, прививать им навыки исследовательской творческой работы, которые могут пригодиться в дальнейшем, какой бы вид деятельности они не избрали после окончания школы.
Этой цели может служить, например, такое задание: «Число 6 представим в виде суммы всех его делителей, исключая из их состава само это число (6 = 1 + 2 + 3). Установите, сколько в первых двух десятках натуральных чисел (1, 2, 3, …, 20) существует чисел, равных сумме всех своих делителей (такие числа называют совершенными)». Учащиеся путем перебора получают ответ. При этом следует добиваться от них понимания того, что полученный вывод (в первых двух десятках натуральных чисел содержится одно «совершенное» число — число 6, ближайшим следующим «совершенным» числом, которое можно обнаружить путем проб, является 28: 28 = 1 + 2 + 4 + 7 + 14) является строго (научно) обоснованным, так как примененный метод полной индукции (так называемый метод перебора) является научным и широко применяется в математике при доказательстве теорем и решении задач.
Методом полной индукции (рассмотрением всех возможных случаев) может быть уже в младших классах школы доказана теорема: «В первой сотне натуральных чисел содержится 25 простых чисел».
Подчеркивая роль дедуктивных доказательств (доказательств в общем виде), учитель должен обратить внимание учащихся на роль наблюдений и неполной индукции при «открытии» математических закономерностей, при нахождении способа решения самых разнообразных математических задач, на роль полной индукции при обосновании найденных индуктивным путем закономерностей.
Поясним сказанное примерами. Рассмотрим задачу:
«Может ли: а) сумма пяти последовательных натуральных чисел быть простым числом; б) сумма квадратов пяти последовательных натуральных чисел быть простым числом?»
Прежде, чем решать эту задачу в общем виде, целесообразно на нескольких частных примерах выяснить, каким числом (простым или составным) могут быть указанные в задаче суммы. С помощью примеров можно получить гипотезы: а) сумма пяти последовательных натуральных чисел — число составное; б) сумма квадратов пяти последовательных натуральных чисел — число составное.
Полученные на примерах (с помощью неполной индукции) гипотезы легко доказываются в общем виде.
Другая задача: «Может ли разность двух трехзначных чисел, из которых второе записано теми же цифрами, что и первое, но в обратном порядке, быть квадратом натурального числа?»
На наших занятиях прежде чем решать эту задачу в общем виде, учащийся должен был на частных примерах, с помощью неполной индукции, получить предполагаемый ответ (высказать гипотезу): рассматриваемая разность не может быть равна квадрату какого-либо натурального числа. Дедуктивное обоснование этой гипотезы, как правило, не вызывает у учащихся затруднений.
Учащиеся должны понимать, что на частных примерах никакого утверждения доказать нельзя. Частный пример ничего не доказывает в математике, но он может подвести к правильному выводу.
Развитие предметной деятельности у детей
Предметная деятельность – деятельность, направленная на овладение социально выработанными способами употребления различных «культурных предметов»: орудий, игрушек, предметов одежды, мебели и т.п. Согласно концепции ведущей деятельности, предметная деятельность является таковой в раннем возрасте. Ка ...
Формирование познавательного интереса учащихся на уроках чтения
Одной из главных задач обучения в начальной школе является формирование у детей умения читать. И хотя усилий в этом направлении прилагается немало, результаты нельзя назвать удовлетворительными, так как педагогическая практика показывает, что у детей в начальных классах навык чтения формируется нед ...
Динамика и причины роста детской инвалидности
В настоящее время 1,6 млн. детей, проживающих в Российской Федерации,т.е. 4,5% всей детской популяции, относящиеся к категории детей с ограниченными возможностями здоровья. В 2002 году в органах социальной защиты населения состояли на учете 642 тыс. детей- инвалидов в возрасте до 18 лет, что состав ...