Условия и задачи развития продуктивного мышления в учебной деятельности

Развитие образования » Развитие продуктивного мышления на уроках математики » Условия и задачи развития продуктивного мышления в учебной деятельности

Страница 8

В отличии от неполной индукции полная индукция имеет доказательную силу, и ее роль при решении многих алгебраических задач (прежде всего на делимость), трудно переоценить.

Приведем примеры. Пусть учащимся предложена задача: «Докажите, что любую сумму большую 7 к., можно уплатить трех- и пятикопеечными монетами не получая сдачи».

Для решения этой задачи достаточно проверить, что трех- и пятикопеечными монетами можно уплатить 8, 9 и 10 к. (8 = 3 + 5, 9 = 3 + 3 + 3, 10 = 5 + 5), а затем добавлять монеты по 3 к.

Решив таким образом задачу, следует добиться от учащихся ясного понимания того, что задача решена с помощью полной индукции: все числа большие 7, разбили на три непересекающихся класса — 8 + 3k, 9 + 3k, 10 + 3k, где k ÎN, в каждом из которых решение задачи существует.

Можно оформить решение задачи несколько иначе, представив любое натуральное число п, большее 7, в одном из следующих видов:

п = 3k, где k ÎN, k ³ 3;

п = 3k + 1, где k ÎN, k ³ 3;

п = 3k + 2, где k ÎN, k ³ 2.

Доказав в каждом из трех случаев возможность представления числа п требуемым образом, решим задачу методом полной индукции.

Для закрепления способа решения задач методом полной индукции полезно рассматриваемую задачу решить другим способом, разбив натуральные числа не на 3, а на 5 классов.

Учащиеся должны понимать, что метод полной индукции является научно-обоснованным методом и им можно пользоваться наряду с другими.

Ясно, что применять метод полной индукции можно лишь тогда, когда число рассматриваемых в задаче случаев конечно и не слишком далеко. Но иногда этим методом задачу можно решить много проще, чем другим.

О нахождении способов решения задач.

Огромная значимость нахождения школьниками различных способов решения задач по математике не раз отмечалась на страницах методической литературы. Однако наши наблюдения показывают, что на уроках, как правило, рассматривается лишь один из способов решения задачи, причем не всегда наиболее рациональный. Приводимая в таких случаях аргументация в виде отсутствия достаточного количества времени на решение одной задачи различными способами не имеет под собой основы: для математического развития учащихся, для развития их творческого мышления гораздо полезнее одну задачу решить несколькими способами (если это возможно) и не жалеть на это времени, чем несколько однотипных задач одним способом. Из различных способов решения одной и той же задачи надо предложить учащимся выбрать наиболее рациональный, красивый.

При отыскании различных способов решения задач у школьников формируется познавательный интерес, развиваются творческие способности, вырабатываются исследовательские навыки. После нахождения очередного метода решения задачи учащийся, как правило, получает большое моральное удовлетворение. Учителю, как нам кажется, важно поощрять поиск различных способов решения задач, а не стремиться навязывать свое решение. Общие методы решения задач должны стать прочным достоянием учащихся, но наряду с этим необходимо воспитывать у них умение использовать индивидуальные особенности каждой задачи, позволяющие решить ее проще. Именно отход от шаблона, конкретный анализ условий задачи являются залогом успешного ее решения.

Особое внимание, на наш взгляд, следует обратить на решение задач арифметическим способом, так как именно решение задач арифметическим способом способствует развитию оригинальности мышления, изобретательности.

Часто учащиеся, ознакомившись со способом решения задач с помощью уравнения, не обременяют себя глубоким анализом условия задачи, стараются побыстрее составить уравнение и перейти к его решению. При этом и введение обозначений, и схема решений, как правило, соответствуют определенному шаблону.

В этом случае задача учителя — показать учащимся на примерах, что решение задач по шаблону часто приводит к значительному увеличению объема работы, а иногда и к усложнению решения, в результате чего увеличивается возможность появления ошибок. Поэтому учащимся полезно предложить, прежде чем составлять уравнение для решения задачи, внимательно изучить условие задачи, подумать над тем, какой способ решения наиболее соответствует ее условию, попытаться решить задачу без использования уравнений, арифметическим способом.

К сожалению, довольно широко распространено мнение, что решение задач повышенной трудности арифметическими методами излишне ввиду существования более сильного метода решения задач с помощью составления уравнения.

Существует и другое мнение, опирающееся на наблюдения за учащимися, согласно которому решение задач только алгебраическим методом ведет к одностороннему математическому развитию учащихся. Следует учитывать и то, что для составления уравнения следует использовать определенные арифметические навыки, понимание зависимостей между величинами. Кроме того, существует ряд задач, решение которых арифметическими методами изящнее и проще, чем с помощью уравнений.

Страницы: 3 4 5 6 7 8 9 10 11

Речевое общение и условия его формирования в школе для слабослышащих учащихся
Речевое общение (коммуникация) представляет собой особый вид деятельности, цель которой - обмен мыслями, установление взаимопонимания. При речевом общении люди передают разнообразную информацию (сообщают определенные сведения), запрашивают информацию, побуждают друг друга к действию, выражают свое ...

Исследование техники чтения и понимания почитанного
Первые два исследования – оценивание техники чтения вслух и понимание прочитанного я решила объединить в один эксперимент. Описание методики следующее. Задание 1. Техника чтения вслух и понимание прочитанного. Назначение задания: изучить уровень чтения – способ чтения, количество и характер ошибок, ...

Использование интерактивных туров на уроках иностранного языка
Среди проблем, теоретически и экспериментально решаемых методикой иностранных языков, коммуникативная компетенция и способы ее достижения является одной из наиболее актуальных. Современные интерпретации коммуникативной компетенции в области преподавания иностранных языков восходят к определению аме ...

Навигация

Copyright © 2019 - All Rights Reserved - www.creativeeducation.ru